Skip to main content

Bernoulli's equation

Euler's equation is given as \[dp =  - \rho vdv\]This equation applies to an incompressible and in-viscid flow where \(\rho  = \,{\rm{constant}}\). In a streamline, in between two points 1 and 2, the above Euler equation can be integrated as \[\int\limits_{{p_1}}^{{p_2}} {dp =  - \rho \int\limits_{{v_1}}^{{v_2}} {vdv} } \]\[{p_2} - {p_1} =  - \rho \left( {\frac{{v_2^2}}{2} - \frac{{v_1^2}}{2}} \right)\]\[ \Rightarrow {p_1} + \frac{1}{2}\rho v_1^2 = {p_2} + \frac{1}{2}\rho v_2^2\]This can be written as\[p + \frac{1}{2}\rho {v^2} = {\rm{constant}}\] for a streamline.For an rotational flow the value of constant is changing from streamline to another.For irrotational flow,the constant is same for all streamlines and \[p + \frac{1}{2}\rho {v^2} = {\rm{constant}}\]throughout the flow. Physical significance of Bernoulli's equation is that when the velocity increases, the pressure decreases  and when the velocity decreases, the pressure increases.
Example: Calculate the velocity at a point on the airfoil, where the pressure is\({\rm{0}}{\rm{.4 \times 1}}{{\rm{0}}^{\rm{5}}}{\rm{N/}}{{\rm{m}}^{\rm{2}}}\). The free stream velocity is \({\rm{70m/s}}\) in a standard sea level conditions.
Solution: At sea level conditions \({{\rm{\rho }}_\infty }{\rm{ = 1}}{\rm{.23kg/}}{{\rm{m}}^{\rm{3}}}\) and  \({p_\infty }{\rm{ = 1}}{\rm{.01}} \times {\rm{1}}{{\rm{0}}^5}{\rm{N/}}{{\rm{m}}^{\rm{2}}}\)\[{p_\infty } + \frac{1}{2}\rho v_\infty ^2 = p + \frac{1}{2}\rho {v^2}\]\[v = \sqrt {\frac{{2\left( {{p_\infty } - p} \right)}}{\rho } + v_\infty ^2} \]\[v = \sqrt {\frac{{2\left( {1.01 - 0.4} \right) \times {{10}^5}}}{{1.23}} + {{\left( {70} \right)}^2}} \]\[ \Rightarrow v = 322.63\,{\rm{m/s}}{\rm{.}}\]Example: In an inviscid, incompressible flow of air along a streamline, the air density is 0.002377 \({\rm{slug/f}}{{\rm{t}}^{\rm{3}}}\). At a point on the streamline pressure and velocity are 2000 \({\rm{lb/f}}{{\rm{t}}^{\rm{2}}}\) and 15 ft/s, respectively. Downstream at other point on the streamline the velocity is 150 ft/s. What is the pressure at this point.
From, Bernoulli's equation\[{p_1} + \frac{1}{2}\rho v_1^2 = {p_2} + \frac{1}{2}\rho v_2^2\]\[{p_2} = {p_1} + \frac{1}{2}\rho \left( {v_1^2 - v_2^2} \right)\]\[{p_2} = 2116 + \frac{1}{2}\left( {0.002377} \right)\left[ {{{\left( {15} \right)}^2} - {{\left( {150} \right)}^2}} \right]\]\[ = 2089.526\,\,lb/f{t^2}\]

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...