Skip to main content

Center of pressure

Example: Calculate the location of center of pressure of a airfoil section at an angle of attack of \({{\rm{5}}^{\rm{o}}}\), whose coefficient of lift, \({{\rm{c}}_{\rm{l}}}\) is 0.80 and \({{\rm{c}}_{{\rm{m,c/4}}}}\) is -0.08.Consider incompressible flow over the airfoil.
Solution:-
Location of center of pressure is given as \[{x_{cp}} = \left( {\frac{c}{4}} \right) - \frac{{M_{c/4}^\prime }}{{{L^{^\prime }}}}\]
Where\({x_{cp}}\)  is the distance of center of pressure from the leading edge of airfoil, and 'c' is the chord length .\(M_{c/4}^\prime \) is moment per unit span about quarter-chord point and \({L^\prime }\) is the lift per unit span;\[\begin{array}{l}{x_{cp}} = \frac{c}{4} - \frac{{M_{c/4}^\prime }}{{{L^\prime }}}\\\frac{{{x_{cp}}}}{c} = \frac{1}{4} - \frac{{\left( {M_{c/4}^\prime /{q_\infty }{c^2}} \right)}}{{\left( {{L^\prime }/{q_\infty }c} \right)}}\end{array}\]\[\begin{array}{l} = \frac{1}{4} - \left( {\frac{{{c_{m,c/4}}}}{{{c_l}}}} \right)\\ = \frac{1}{4} - \left( {\frac{{ - 0.08}}{{0.80}}} \right)\\ = \frac{1}{4} + 0.1\\ = 0.25 + 0.1\\ = 0.35\end{array}\]Therefore, location of center of pressure is at 0.35 with respect to chord length.

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...