Skip to main content

Circulation and Vorticity

Circulation is the line integral around a closed curve of the velocity field.It is normally denoted by  \(\tau \).\[\tau  =  - \oint_c {V.ds} \]

Circulation should not be confused by its general dictionary meaning, in aerodynamics it is the mathematical line integral around a closed curve of a velocity field - a technical term. Circulation is related to vorticity through stoke's theorem\[\tau  =  - \oint_c {V.ds}  =  - \iint\limits_s {\left( {\nabla  \times V} \right)}.ds\]Example: Consider a velocity field where x and y components of velocity are \(u = 5y/\left( {{x^2} + {y^2}} \right)\) and \(v =  - 5x/\left( {{x^2} + {y^2}} \right)\). Calculate circulation around a circular path of radius \(3m\) . Let the units of \(u\)  and \(v\) be in \(m/s\).
Solution: Let \(x = r\cos \theta ,\,y = r\sin \theta \), therefore \({x^2} + {y^2} = {r^2}\). In polar- coordinates \({V_r} = u\cos \theta  + v\sin \theta \) and \({V_\theta } =  - u\sin \theta  + v\cos \theta \)
Hence, 
\(u = \frac{{5y}}{{{x^2} + {y^2}}} = \frac{{5r\sin \theta }}{{{r^2}}} = \frac{{5\sin \theta }}{r}\) ,  \(v =  - \frac{{5x}}{{{x^2} + {y^2}}} =  - \frac{{5r\cos \theta }}{{{r^2}}} =  - \frac{{5\cos \theta }}{r}\)

\({V_r} = \frac{{5\sin \theta }}{r}\left( {\cos \theta } \right) + \left( { - \frac{{5\cos \theta }}{r}} \right)\sin \theta  = 0\) , \({V_\theta } =  - \frac{{5\sin \theta }}{r}\sin \theta  + \left( { - \frac{{5\cos \theta }}{r}} \right)\cos \theta  =  - \frac{5}{r}\)

\(V.ds = \left( {{V_r}{e_r} + {V_\theta }{e_\theta }} \right).\left( {dr{e_r} + rd\theta {e_\theta }} \right)\)\( = \left( {{V_r}dr + r{V_\theta }d\theta } \right)\)\( = 0 + r\left( { - \frac{5}{r}} \right)d\theta \)\( =  - 5d\theta \)

Therefore, \(\tau  =  - \oint_c {V.ds}  =  - \int\limits_0^{2\pi } { - 5d\theta }  = 5\int\limits_0^{2\pi } {d\theta } \)\( = 5 \times 2\pi \ = \,10\,{m^2}/s\).
Here, value of circulation, is independent of diameter of circular path.

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...