Skip to main content

Irrotational flow

A flow is called rotational if \(\nabla  \times V \ne 0\) at every point in a flow. The fluid element has a finite angular velocity. A flow field is called irrotational if \(\nabla  \times V = 0\) at every point in a flow. The fluid elements have no angular velocity and the motion is translation.
Example: A velocity field has a radial component of velocity \({V_r} = 0\) and tangential components of velocity \({V_\theta } = 4r\), respectively. Is this flow rotational or irrotational? 
Solution: Here \({V_r} = 0\) and \({V_\theta } = 4r\)\[\begin{array}{*{20}{l}}{\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {\frac{{\partial {V_\theta }}}{{\partial r}} + \frac{{{V_\theta }}}{r} - \frac{1}{r}\frac{{\partial \left( {{V_r}} \right)}}{{\partial \theta }}} \right]}\\{\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {\frac{{\partial \left( {4r} \right)}}{{\partial r}} + \frac{{4r}}{r} - \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }}} \right]}\\{\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {4 + 4 - 0} \right] = 8{e_z}}\end{array}\]therefore, \({\nabla  \times \mathop V\limits^ \to  }\)= finite.The flow is rotational.

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...