Source flow:It is type of flow,where all the streamlines are straight lines emanating from a central point.The velocity along each of the streamlines vary inversely with distance from central point.Velocity components in the radial and tangential directions are \({V_r}\,{\rm{and}}\,{V_\theta }\).\[\begin{array}{l}{V_r} = \frac{\Lambda }{{2\pi r}}\\\Lambda = {\rm{source}}\,{\rm{strength}}\\{V_\theta } = 0\end{array}\]Example:For a source flow ,calculate
(a).The time rate of change of the volume of a fluid element per unit volume.
(b) The vorticity.
(b) The vorticity.
Solution : (a)\[\nabla .\mathop V\limits^ \to = \frac{1}{{\partial V}}\frac{{D\left( {\partial V} \right)}}{{Dt}}\]In polar-coordinates we have \[\nabla .\mathop V\limits^ \to = \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r{V_r}} \right) + \frac{1}{r}\frac{{\partial {V_\theta }}}{{\partial \theta }}\]Let\[\begin{array}{l}x = r\cos \theta \\y = r\sin \theta \\{V_r} = u\cos \theta + v\sin \theta \\{V_\theta } = - u\sin \theta + v\cos \theta \end{array}\]Let velocity field is given by\[\begin{array}{l}u = \frac{{cx}}{{({x^2} + {y^2})}} = \frac{{cr\cos \theta }}{{{r^2}}} = \frac{{c\cos \theta }}{r}\\v = \frac{{cy}}{{({x^2} + {y^2})}} = \frac{{cr\sin \theta }}{{{r^2}}} = \frac{{c\sin \theta }}{r}\end{array}\]therefore\[\begin{array}{l}{V_r} = \frac{c}{r}{\cos ^2}\theta + \frac{c}{r}{\sin ^2}\theta = \frac{c}{r}\\{V_\theta } = - \frac{c}{r}\cos \theta \sin \theta + \frac{c}{r}\cos \theta \sin \theta = 0\\\nabla .\mathop V\limits^ \to = \frac{1}{r}\frac{{\partial \left( c \right)}}{{\partial r}} + \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }} = 0\end{array}\](b) Vorticity is given by\[\begin{array}{l}\nabla \times \mathop V\limits^ \to = {e_z}\left[ {\frac{{\partial {V_\theta }}}{{\partial r}} + \frac{{{V_\theta }}}{r} - \frac{1}{r}\frac{{\partial {V_r}}}{{\partial \theta }}} \right]\\\nabla \times \mathop V\limits^ \to = {e_z}\left[ {0 + 0 - 0} \right] = 0\end{array}\]Therefore, the flow field is ir-rotational.
Comments
Post a Comment