Skip to main content

Source flow

Source flow:It is type of flow,where all the streamlines are straight lines emanating from a central point.The velocity along each of the streamlines vary inversely with distance from central point.Velocity components in the radial and tangential directions are \({V_r}\,{\rm{and}}\,{V_\theta }\).\[\begin{array}{l}{V_r} = \frac{\Lambda }{{2\pi r}}\\\Lambda  = {\rm{source}}\,{\rm{strength}}\\{V_\theta } = 0\end{array}\]Example:For a source flow ,calculate
(a).The time rate of change of the volume of a fluid element per unit volume.
(b) The vorticity.
Solution : (a)\[\nabla .\mathop V\limits^ \to   = \frac{1}{{\partial V}}\frac{{D\left( {\partial V} \right)}}{{Dt}}\]In polar-coordinates we have \[\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{\partial }{{\partial r}}\left( {r{V_r}} \right) + \frac{1}{r}\frac{{\partial {V_\theta }}}{{\partial \theta }}\]Let\[\begin{array}{l}x = r\cos \theta \\y = r\sin \theta \\{V_r} = u\cos \theta  + v\sin \theta \\{V_\theta } =  - u\sin \theta  + v\cos \theta \end{array}\]Let velocity field is given by\[\begin{array}{l}u = \frac{{cx}}{{({x^2} + {y^2})}} = \frac{{cr\cos \theta }}{{{r^2}}} = \frac{{c\cos \theta }}{r}\\v = \frac{{cy}}{{({x^2} + {y^2})}} = \frac{{cr\sin \theta }}{{{r^2}}} = \frac{{c\sin \theta }}{r}\end{array}\]therefore\[\begin{array}{l}{V_r} = \frac{c}{r}{\cos ^2}\theta  + \frac{c}{r}{\sin ^2}\theta  = \frac{c}{r}\\{V_\theta } =  - \frac{c}{r}\cos \theta \sin \theta  + \frac{c}{r}\cos \theta \sin \theta  = 0\\\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{{\partial \left( c \right)}}{{\partial r}} + \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }} = 0\end{array}\](b) Vorticity is given by\[\begin{array}{l}\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {\frac{{\partial {V_\theta }}}{{\partial r}} + \frac{{{V_\theta }}}{r} - \frac{1}{r}\frac{{\partial {V_r}}}{{\partial \theta }}} \right]\\\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {0 + 0 - 0} \right] = 0\end{array}\]Therefore, the flow field is ir-rotational. 

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...