Skip to main content

Vortex flow

In a vortex flow streamlines are concentric circles about a given point.The velocity along any given streamline is constant and varies from one streamline to another inversely with distance from the common centre.The velocity components in radial and tangential directions are\[\begin{array}{l}{V_r} = 0\,{\rm{and}}\,\,{V_\theta } = \frac{{{\rm{constant}}}}{r}\\{V_\theta } = \frac{{ - \tau }}{{2\pi r}}\end{array}\]\(\tau \) = strength of vortex flow.
Example: For a vortex flow,\(u = \frac{{4x}}{{{x^2} + {y^2}}}\,and\,v = \frac{{ - 4y}}{{{x^2} + {y^2}}}\),calculate(a) The time rate of change of the volume of a fluid element per unit volume.(b) The vorticity.
Solution: On changing the equation to polar co-ordinates \[\begin{array}{l}x = r\cos \theta \\y = r\sin \theta \\{V_r} = u\cos \theta  + v\sin \theta \\{V_\theta } =  - u\sin \theta  + v\cos \theta \end{array}\]\[\begin{array}{l}u = \frac{{4y}}{{({x^2} + {y^2})}} = \frac{{4r\sin \theta }}{{{r^2}}} = \frac{{4\sin \theta }}{r}\\v = \frac{{ - 4x}}{{({x^2} + {y^2})}} = \frac{{4r\cos \theta }}{{{r^2}}} = \frac{{ - 4\cos \theta }}{r}\\{V_r} = \frac{4}{r}\cos \theta \sin \theta  - \frac{4}{r}\cos \theta \sin \theta  = 0\\{V_\theta } = \frac{{ - 4}}{r}{\sin ^2}\theta  - \frac{4}{r}{\cos ^2}\theta  = \frac{{ - 4}}{r}\end{array}\]
Time rate of change of volume of a fluid element per unit volume is given as\[\begin{array}{l}\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{{\partial r{V_r}}}{{\partial r}} + \frac{1}{r}\frac{{\partial {V_\theta }}}{{\partial \theta }}\\\nabla .\mathop V\limits^ \to   = \frac{1}{r}\frac{{\partial (0)}}{{\partial r}} + \frac{1}{r}\frac{{\partial \left( { - c/r} \right)}}{{\partial \theta }} = 0 + 0 = 0\end{array}\] (b) Vorticity = \[\begin{array}{l}\nabla  \times \mathop V\limits^ \to   = {e_z}\left[ {\frac{{\partial \left( { - c/r} \right)}}{{\partial r}} - \frac{c}{{{r^2}}} - \frac{1}{r}\frac{{\partial \left( 0 \right)}}{{\partial \theta }}} \right]\\ = {e_z}\left[ {\frac{c}{{{r^2}}} - \frac{c}{{{r^2}}} - 0} \right]\\ = 0\end{array}\]\(\nabla  \times \mathop V\limits^ \to   = 0\) except at origin, since it is singular at origin.

Comments

Popular posts from this blog

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Compressible Flow

1) The temperature and pressure at the stagnation point of a high speed missile are \({934^ \circ }\) R and 7.8 atm, respectively.Calculate the density at this point. Solution: \[\begin{array}{l}T = {934^ \circ }R\\p = 7.8\,atm\\Density = \rho  = ?\\p = \rho RT\\\rho  = \frac{P}{{RT}} = \frac{{\left( {7.8 \times 2116} \right)}}{{1716 \times 934}} = 0.0103\,slug/f{t^3}\end{array}\]2)Calculate \({c_p},{c_v},e\,{\rm{and}}\,h\) for  a) The stagnation point conditions given in problem (1). b) Air at standard sea level conditions. Solution: \({c_p},{c_v},e\,{\rm{and}}\,h\) for stagnation point conditions will be  a)  \[{c_p} = \frac{{\gamma R}}{{\gamma  - 1}} = \frac{{1.4 \times 1716}}{{0.4}} = 6006\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[{c_v} = \frac{R}{{\gamma  - 1}} = \frac{{1716}}{{0.4}} = 4290\frac{{ft}}{{slug}}\frac{{lb}}{{{}^ \circ R}}\]\[e = {c_v}T = 4290(934) = 4.007 \times {10^6}\frac{{ft\,lb}}{{slug}}\]\[h ...