Skip to main content

Posts

Showing posts from October, 2018

Bernoulli's equation

Euler's equation is given as \[dp =  - \rho vdv\]This equation applies to an incompressible and in-viscid flow where \(\rho  = \,{\rm{constant}}\). In a streamline, in between two points 1 and 2, the above Euler equation can be integrated as \[\int\limits_{{p_1}}^{{p_2}} {dp =  - \rho \int\limits_{{v_1}}^{{v_2}} {vdv} } \]\[{p_2} - {p_1} =  - \rho \left( {\frac{{v_2^2}}{2} - \frac{{v_1^2}}{2}} \right)\]\[ \Rightarrow {p_1} + \frac{1}{2}\rho v_1^2 = {p_2} + \frac{1}{2}\rho v_2^2\]This can be written as\[p + \frac{1}{2}\rho {v^2} = {\rm{constant}}\] for a streamline.For an rotational flow the value of constant is changing from streamline to another.For irrotational flow,the constant is same for all streamlines and \[p + \frac{1}{2}\rho {v^2} = {\rm{constant}}\]throughout the flow. Physical significance of Bernoulli's equation is that when the velocity increases, the pressure decreases  and when the velocity decreases, the pressure increases. ...

Non Lifting flow over a circular cylinder

When there is a superposition of a uniform flow with a doublet (Which is a source-sink pair of flows), a non-lifting flow over a circular cylinder can be analysed. Stream function \('\psi '\) for a uniform flow is \[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right)\] velocity field is obtained by differentiating above equation\[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \]\[\,{\rm{and}}\,{{\rm{V}}_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta \] Stagnation points can be obtained by equating \({V_r}\) and \({{\rm{V}}_\theta }\) to zero.Considering an incompressible and inviscid flow pressure coefficient over a circular cylinder is \[{C_p} = 1 - 4{\sin ^2}\theta \]Example: Calculate locations on the surface of a cylinder where surface pressure equals to free-stream pressure considering a non-lifting flow. Solution: Pressure coefficient ...

Lifting flow over a cylinder

Lifting flow over a circular cylinder can be synthesised as superposition of a vortex flow of strength \('\tau '\) with non lifting flow over a cylinder. The stream function for the flow can be given as\[\psi  = \left( {{V_\infty }r\sin \theta } \right)\left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right) + \frac{\tau }{{2\pi }}\ln \frac{r}{R}\]and velocity components in the radial and tangential direction can be obtained as \[{V_r} = \left( {1 - \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\cos \theta \] \[{V_\theta } =  - \left( {1 + \frac{{{R^2}}}{{{r^2}}}} \right){V_\infty }\sin \theta  - \frac{\tau }{{2\pi r}}\]The velocity on the surface of the cylinder can be given as  \[V =  - 2{V_\infty }\sin \theta  - \frac{\tau }{{2\pi R}}\] and coefficient of lift as \[{c_l} = \frac{\tau }{{R{V_\infty }}}\]Lift per unit span is given as \[{L^\prime} = {\rho _\infty }{V_\infty }\tau \] Example: Calculate the peak coefficient of pressure for a...